BISMA

[image: image3.jpg]A

&

\

BIYANI

Model Answer Paper
MCA IV Sem

Paper- Net Framework and Programming in ASP.Net

Time: 2 hrs MM:20

[I] Answer the following questions in one word and one line only (4*1=4)
Q1- A Button in a web form is class or object?
 Ans. Button is a Class .Button class in Windows Forms represents a Button control. A Button control is a child control placed on a Form and used to process click event and can be clicked by a mouse click or by pressing ENTER or ESC keys.
Q2 –What are the Page Life Cycle?

Ans. When an ASP.NET page runs, the page goes through a life cycle in which it performs a series of processing steps. These include initialization, instantiating controls, restoring and maintaining state, running event handler code, and rendering.

It is important for you to understand the page life cycle so that you can write code at the appropriate life-cycle stage for the effect you intend.

life cycle of a control is based on the page life cycle, and the page raises many of the events that you need to handle in a custom control.

Stages are :- PreInit

2. Init
3. InitComplete
4. PreLoad
5. Load
6. Control events

7. LoadComplete
8. PreRender
9. PreRenderComplete
10. SaveStateComplete
11. Render
12. Unload
Q3- What is the full form of ADO?
Ans.The full form of ADO is ActiveX Data Objects (ADO).

Q4- Response .redirect is used for what purpose?
The Response.Redirect method redirects a request to a new URL and specifies the new URL while the Server.Transfer method for the current request, terminates execution of the current page and starts execution of a new page using the specified URL path of the page.

Response.Redirect("UserDetail.aspx");
[II]-Write the short note on following. (2*2=4)

Q1. What is MSIL?
Ans. MSIL stands for Microsoft Intermediate Language. We can call it as Intermediate Language (IL) or Common Intermediate Language (CIL). During the compile time , the compiler convert the source code into Microsoft Intermediate Language (MSIL) .Microsoft Intermediate Language (MSIL) is a CPU-independent set of instructions that can be efficiently converted to the native code. During the runtime the Common Language Runtime (CLR)'s Just In Time (JIT) compiler converts the Microsoft Intermediate Language (MSIL) code into native code to the Operating System.
Q2.Explain JIT and CLR.
Ans. JIT is the internal compiler of .NET which takes MicroSoft Intermediate Code Language (MSICL) code from CLR and executes it to machine specific instructions whereas CLR works as an engine its main task is to provide MSICL code to JIT to ensure that code is fully compiled as per machine specification.
 [III]- Attempt all Questions. Each question contain 2.5 marks (2.5*2=5)
Q1. List various validation controls in Asp.net.
Ans.Validation is of two types:
1. Client Side

2. Serve Side

Client side validation is good but we have to be dependent on browser and scripting language support.

Client side validation is considered convenient for users as they get instant feedback. The main advantage is that it prevents a page from being postback to the server until the client validation is executed successfully.

For developer point of view serve side is preferable because it will not fail, it is not dependent on browser and scripting language.

You can use ASP.NET validation, which will ensure client, and server validation. It work on both end; first it will work on client validation and than on server validation. At any cost server validation will work always whether client validation is executed or not. So you have a safety of validation check.

For client script .NET used JavaScript. WebUIValidation.js file is used for client validation by .NET

Validation Controls in ASP.NET

An important aspect of creating ASP.NET Web pages for user input is to be able to check that the information users enter is valid. ASP.NET provides a set of validation controls that provide an easy-to-use but powerful way to check for errors and, if necessary, display messages to the user.

There are six types of validation controls in ASP.NET
1. RequiredFieldValidation Control

2. CompareValidator Control

3. RangeValidator Control

4. RegularExpressionValidator Control

5. CustomValidator Control

6. ValidationSummary

The below table describes the controls and their work:
	

	Validation Control
	Description

	RequiredFieldValidation
	Makes an input control a required field

	CompareValidator
	Compares the value of one input control to the value of another input control or to a fixed value

	RangeValidator
	Checks that the user enters a value that falls between two values

	RegularExpressionValidator
	Ensures that the value of an input control matches a specified pattern

	CustomValidator
	Allows you to write a method to handle the validation of the value entered

	ValidationSummary
	Displays a report of all validation errors occurred in a Web page

All validation controls are rendered in form as (label are referred as on client by server)

Important points for validation controls
· ControlToValidate property is mandatory to all validate controls.

· One validation control will validate only one input control but multiple validate control can be assigned to a input control.

Q2. What is the role of CLR in Asp.net.
Ans. Full form of CLR is Common Language Runtime and it forms the heart of the .NET framework.All Languages have runtime and its the responsibility of the runtime to take care of the code execution of the program.For example VC++ has MSCRT40.DLL,VB6 has MSVBVM60.DLL , Java has Java Virtual Machine etc. Similarly .NET has CLR.Following are the responsibilities of CLR

 Garbage Collection :- CLR automatically manages memory thus eliminating memory leakes. When objects are not referred GC automatically releases those memory thus providing efficient memory management.

 Code Access Security :- CAS grants rights to program depending on the security configuration of the machine.Example the program has rights to edit or create a new file but the security configuration of machine does not allow the program to delete a file.CAS will take care that the code runs under the environment of machines security configuration.

 Code Verification :- This ensures proper code execution and type safety while the code runs.It prevents the source code to perform illegal operation such as accessing invalid memory locations etc.

 IL(Intermediate language)-to-native translators and optimizer's :- CLR uses JIT and compiles the IL code to machine code and then executes. CLR also determines depending on platform what is optimized way of running the IL code.

[IV]- Attempt any one Question. Each question contain 7 marks (7*1=7)
Q1. Discuss the features of .net platform and Architecture in detail.
Ans. The .NET Framework is a new and revolutionary platform created by Microsoft for developingapplications.

· It is a platform for application developers.

· It is a Framework that supports Multiple Language and Cross language integration.

· IT has IDE (Integrated Development Environment).

· Framework is a set of utilities or can say building blocks of your application system.

· .NET Framework provides GUI in a GUI manner.

· .NET is a platform independent but with help of Mono Compilation System (MCS). MCS is a middle level interface.

· .NET Framework provides interoperability between languages i.e. Common Type System (CTS) .

· .NET Framework also includes the .NET Common Language Runtime (CLR), which is responsible for maintaining the execution of all applications developed using the .NET library.

· The .NET Framework consists primarily of a gigantic library of code.

Definition: A programming infrastructure created by Microsoft for building, deploying, and running applications and services that use .NET technologies, such as desktop applications and Web services.

Cross Language integration

You can use a utility of a language in another language (It uses Class Language Integration).

.NET Framework includes no restriction on the type of applications that are possible. The .NET Framework allows the creation of Windows applications, Web applications, Web services, and lot more.

The .NET Framework has been designed so that it can be used from any language, including C#, C++, Visual Basic, JScript, and even older languages such as COBOL.

Difference between Visual Studio and Visual Studio .NET

	Visual Studio
	Visual Studio

	It is object based
	It is object oriented

	Internet based application

- Web Application

- Web services

- Internet enable application

- Third party API

- Peer to peer Application
	All developing facilities in internet based application

	Poor error handling Exception/Error
	Advance error handler and debugger

	Memory Management System Level Task
	Memory Management Application Domain with help of GC (Garbage Collector)

	DLL HELL
	VS .NET has solved DLL HELL Problem

DLL Hell

"DLL Hell" refers to the set of problems caused when multiple applications attempt to share a common component like a dynamic link library (DLL) or a Component Object Model (COM) class.

The reason for this issue was that the version information about the different components of an application was not recorded by the system. (Windows Registry cannot support the multiple versions of same COM component this is called the dll hell problem.)

.Net Framework provides operating systems with a Global Assembly Cache (GAC). This Cache is a repository for all the .Net components that are shared globally on a particular machine. When a .Net component is installed onto the machine, the Global Assembly Cache looks at its version, its public key, and its language information and creates a strong name for the component. The component is then registered in the repository and indexed by its strong name, so there is no confusion between different versions of the same component, or DLL.

Architecture of .NET Framework
[image: image1.jpg]Windows Form Web Forms Console Applications

m

I
Erm
.NET Framework Base Class Library (BCL)
i

III

CLR (Common Langauge Runtime)

Garbage Collector (GC) Code Manager

Architecture of CLR

[image: image2.png]CTS CLS
(Common Type Systems) (Common Language Specification)

Includes all data type defintion

MiSL
(Microsoft Intermediate Language)

GC cm
(Garbage Collector) (Code Manager)

Class Loader

Q2- What is page life cycle?
Ans. When a page is requested, it is loaded into the server memory, processed, and sent to the browser. Then it is unloaded from the memory. At each of these steps, methods and events are available, which could be overridden according to the need of the application. In other words, you can write your own code to override the default code.

The Page class creates a hierarchical tree of all the controls on the page. All the components on the page, except the directives, are part of this control tree. You can see the control tree by adding trace= "true" to the page directive. We will cover page directives and tracing under 'directives' and 'event handling'.

The page life cycle phases are:

· Initialization

· Instantiation of the controls on the page

· Restoration and maintenance of the state

· Execution of the event handler codes

· Page rendering

Understanding the page cycle helps in writing codes for making some specific thing happen at any stage of the page life cycle. It also helps in writing custom controls and initializing them at right time, populate their properties with view-state data and run control behavior code.

Following are the different stages of an ASP.NET page:

· Page request - When ASP.NET gets a page request, it decides whether to parse and compile the page, or there would be a cached version of the page; accordingly the response is sent.

· Starting of page life cycle - At this stage, the Request and Response objects are set. If the request is an old request or post back, the IsPostBack property of the page is set to true. The UICulture property of the page is also set.

· Page initialization - At this stage, the controls on the page are assigned unique ID by setting the UniqueID property and the themes are applied. For a new request, postback data is loaded and the control properties are restored to the view-state values.

· Page load - At this stage, control properties are set using the view state and control state values.

· Validation - Validate method of the validation control is called and on its successful execution, the IsValid property of the page is set to true.

· Postback event handling - If the request is a postback (old request), the related event handler is invoked.

· Page rendering - At this stage, view state for the page and all controls are saved. The page calls the Render method for each control and the output of rendering is written to the OutputStream class of the Response property of page.

· Unload - The rendered page is sent to the client and page properties, such as Response and Request, are unloaded and all cleanup done.

ASP.NET Page Life Cycle Events

At each stage of the page life cycle, the page raises some events, which could be coded. An event handler is basically a function or subroutine, bound to the event, using declarative attributes such as Onclick or handle.

Following are the page life cycle events:

· PreInit - PreInit is the first event in page life cycle. It checks the IsPostBack property and determines whether the page is a postback. It sets the themes and master pages, creates dynamic controls, and gets and sets profile property values. This event can be handled by overloading the OnPreInit method or creating a Page_PreInit handler.

· Init - Init event initializes the control property and the control tree is built. This event can be handled by overloading the OnInit method or creating a Page_Init handler.

· InitComplete - InitComplete event allows tracking of view state. All the controls turn on view-state tracking.

· LoadViewState - LoadViewState event allows loading view state information into the controls.

· LoadPostData - During this phase, the contents of all the input fields are defined with the <form> tag are processed.

· PreLoad - PreLoad occurs before the post back data is loaded in the controls. This event can be handled by overloading the OnPreLoad method or creating a Page_PreLoad handler.

· Load - The Load event is raised for the page first and then recursively for all child controls. The controls in the control tree are created. This event can be handled by overloading the OnLoad method or creating a Page_Load handler.

· LoadComplete - The loading process is completed, control event handlers are run, and page validation takes place. This event can be handled by overloading the OnLoadComplete method or creating a Page_LoadComplete handler

· PreRender - The PreRender event occurs just before the output is rendered. By handling this event, pages and controls can perform any updates before the output is rendered.

· PreRenderComplete - As the PreRender event is recursively fired for all child controls, this event ensures the completion of the pre-rendering phase.

· SaveStateComplete - State of control on the page is saved. Personalization, control state and view state information is saved. The HTML markup is generated. This stage can be handled by overriding the Render method or creating a Page_Render handler.

· UnLoad - The UnLoad phase is the last phase of the page life cycle. It raises the UnLoad event for all controls recursively and lastly for the page itself. Final cleanup is done and all resources and references, such as database connections, are freed. This event can be handled by modifying the OnUnLoad method or creating a Page_UnLoad handler.

